member photo

Chargé de Recherche, CNRS

+33 4 91 16 46 71

Equipe / Group: BIP 09

To understand the origin of life, it’s essential to determine “what is life”. Biology explain that life is based on presence of organic molecules (lipids, proteins, NADH, …). In this vision of life, understanding origin of life start by determining how these molecules have been formed. During a long time, theory based on primordial soup was the explanation to demonstrate how these molecules could have been formed, however these results have been controverted and cannot answer to thermodynamics problems which postulated that any physical system like a living organism in an isolated system will dislocate without any energy source. Since then, scientists give new theories integrated these thermodynamics constraints.
From the point of view of metabolism biology and in particular bioenergetics, the hypothesis of the emergence of life as an energy conversion metabolism based on metals is more than attractive. Even if for some RNA molecules a catalytic activity has been identified, such activities are almost non-existent in the living world. On the other hand, a multitude of metabolic catalysts are made by metallo-enzymes. Molecular phylogeny data suggest that many of these metallo-enzymes were present in what is known as LUCA (Last Universal Common Ancestor), the oldest cell entity accessible to phylogenetic approaches. The active sites of many of these ancient metalloproteins have strong similarities with the metallic structures of some minerals proposed to be present at ~ 4 billion years. These intriguing similarities between the fundamental premises of the theories of metal-based inorganic metabolism on the one hand, and the structure of energy metabolism in living organisms on the other, have also been exploited more recently to refine the details of these hypotheses based on empirical observations in the field of microbial bioenergetics.

My project proposes to fill this gap with an innovative approach combining biology (phylogeny, enzymology), biophysics-chemistry, and geology to elucidated prebiotics catalytic reactions involved in the primitive metabolism.

ORCID id: 0000-0003-2946-6771


Wolfgang Nitschke, Barbara Schoepp‐Cothenet, Simon Duval, Kilian Zuchan, Orion Farr, Frauke Baymann, Francesco Panico, Alessandro Minguzzi, Elbert Branscomb, Michael J. Russell.
Aqueous electrochemistry: The toolbox for life's emergence from redox disequilibria.
Electrochemical Science Adv, 2022. DOI: 10.1002/elsa.202100192 HAL: hal-03805068v1


Fabienne Trolard, Simon Duval, Wolfgang Nitschke, Bénédicte Ménez, Céline Pisapia, Jihaine Ben Nacib, Muriel Andréani, Guilhem Bourrié.
Mineralogy, geochemistry and occurrences of fougerite in a modern hydrothermal system and its implications for the origin of life.
Earth-Science Reviews, 2021, 103910 -. DOI: 10.1016/j.earscirev.2021.103910 HAL: hal-03563958v1

Simon Duval, Kilian Zuchan, Frauke Baymann, Barbara Schoepp-Cothenet, Elbert Branscomb, Michael J. Russell, Wolfgang Nitschke.
Minerals and the emergence of life.
MILS, Metals, Microbes, and Minerals - The Biogeochemical Side of Life, 2021, 21, 135-157. DOI: 10.1515/9783110589771-011 HAL: hal-03163239v1


Simon Duval, Elbert Branscomb, Fabienne Trolard, Guilhem Bourrié, Olivier Grauby, Vasile Heresanu, Barbara Schoepp-Cothenet, Kilian Zuchan, Michael J. Russell, Wolfgang Nitschke.
On the why's and how's of clay minerals' importance in life's emergence.
Applied Clay Science, 2020, 195, 105737 -. DOI: 10.1016/j.clay.2020.105737 HAL: hal-02936347v1


Simon Duval, Frauke Baymann, Barbara Schoepp-Cothenet, Fabienne Trolard, Guilhem Bourrié, Olivier Grauby, Elbert Branscomb, Michael J. Russell, Wolfgang Nitschke.
Fougerite: the not so simple progenitor of the first cells.
Interface Focus, 2019, 323 (6), 93 -. DOI: 10.1098/rsfs.2019.0063 HAL: hal-02359667v1


Frauke Baymann, Barbara Schoepp-Cothenet, Simon Duval, Marianne Guiral, Myriam Brugna, Carole Baffert, Michael J. Russell, Wolfgang Nitschke.
On the Natural History of Flavin-Based Electron Bifurcation.
Front. Microbiol., 2018, 8, 357 -. DOI: 10.3389/fmicb.2018.01357 HAL: hal-01828959v1


Simon Duval, Joanne M. Santini, David Lemaire, Florence Chaspoul, Michael J. Russell, Stephane Grimaldi, Wolfgang Nitschke, Barbara Schoepp-Cothenet.
The H-bond network surrounding the pyranopterins modulates redox cooperativity in the molybdenum- bis PGD cofactor in arsenite oxidase.
Biochimica et Biophysica Acta (BBA) - Bioenergetics, 2016, 1857 (9), 1353 - 1362. DOI: 10.1016/j.bbabio.2016.05.003 HAL: hal-01413292v1


Robert van Lis, Wolfgang Nitschke, Simon Duval, Barbara Schoepp-Cothenet.
Arsenics as bioenergetic substrates.
Biochimica et Biophysica Acta (BBA) - Bioenergetics, 2013, 1827 (2), 176 - 188. DOI: 10.1016/j.bbabio.2012.08.007 HAL: hal-01601687v1

Barbara Schoepp-Cothenet, Robert van Lis, Ariane Atteia, Frauke Baymann, Line Capowiez, Anne-Lise Ducluzeau, Simon Duval, Felix ten Brink, Michael J. Russell, Wolfgang Nitschke.
On the universal core of bioenergetics.
Biochimica et Biophysica Acta (BBA) - Bioenergetics, 2013, 1827 (2), 79 - 93. DOI: 10.1016/j.bbabio.2012.09.005 HAL: hal-01606377v1


Aurélie Lieutaud, Robert van Lis, Simon Duval, Line Capowiez, Daniel Muller, Régine Lebrun, Sabrina Lignon, Marie-Laure Fardeau, Marie-Claire Lett, Wolfgang Nitschke, Barbara Schoepp-Cothenet.
Arsenite Oxidase from Ralstonia sp. 22.
J. Biol. Chem., 2010, 35 (27), 3302 - 20441. DOI: 10.1074/jbc.M110.113761 HAL: hal-01602032v1

Simon Duval, Joanne M. Santini, Wolfgang Nitschke, Russ Hille, Barbara Schoepp-Cothenet.
The Small Subunit AroB of Arsenite Oxidase.
J. Biol. Chem., 2010, Vol. I (27), 945 - 20451. DOI: 10.1074/jbc.M110.113811


B. Schoepp-Cothenet, S. Duval, J. M. Santini, W. Nitschke.
Comment on "Arsenic (III) Fuels Anoxygenic Photosynthesis in Hot Spring Biofilms from Mono Lake, California".
Science, 2009, 8 (5621), 206 - 583c. DOI: 10.1126/science.1164967

Anne-Lise Ducluzeau, Robert van Lis, Simon Duval, Barbara Schoepp-Cothenet, Michael J. Russell, Wolfgang Nitschke.
Was nitric oxide the first deep electron sink?.
Trends in Biochemical Sciences, 2009, 34 (1), 9 - 15. DOI: 10.1016/j.tibs.2008.10.005 HAL: hal-01607251v1


Simon Duval, Anne-Lise Ducluzeau, Wolfgang Nitschke, Barbara Schoepp-Cothenet.
Enzyme phylogenies as markers for the oxidation state of the environment: The case of respiratory arsenate reductase and related enzymes.
BMC Evolutionary Biology, 2008, 8 (1), 206 -. DOI: 10.1186/1471-2148-8-206


Daniel Muller, Claudine Médigue, Sandrine Koechler, Valérie Barbe, Mohamed Barakat, Emmanuel Talla, Violaine Bonnefoy, Evelyne Krin, Florence Arsène-Ploetze, Christine Carapito, Michael Chandler, Benoît Cournoyer, Stéphane Cruveiller, Caroline Dossat, Sim.
A Tale of Two Oxidation States: Bacterial Colonization of Arsenic-Rich Environments.
PLoS Genet, 2007, 73 (4), 1917 -. DOI: 10.1371/journal.pgen.0030053 HAL: hal-00340034v1