Systèmes d'adaptation des bactéries
Adaptation systems of bacteriaResearch
La capacité fascinante des bactéries à évoluer dans des environnements changeants repose sur des systèmes d’adaptation complexes. Certains d’entre eux sont étudiés dans le groupe : nous cherchons à comprendre les mécanismes qui permettent aux bactéries de modifier leur métabolisme pour utiliser les ressources disponibles, de réorganiser l’expression génétique en utilisant des facteurs de transcription alternatifs, d’assurer le bon repliement des protéines et de les protéger en fonction des stress rencontrés, de se déplacer vers des composés nutritifs ou fuir des toxiques, et finalement de s’adapter en tant que population en formant des biofilms ou en utilisant les ressources produites par d’autres espèces au sein de consortium bactériens. Ces études sont menées à plusieurs échelles, du niveau moléculaire au cellulaire et jusqu’au multi-cellulaire.

Au niveau moléculaire, l’accent est mis sur l’étude des protéines chaperons et de complexes enzymatiques membranaires.Lorsque les bactéries sont confrontées à un stress (thermique, oxydatif, présence de métaux, …), l’intégrité des protéines est menacée, ce qui affecte leur repliement correct (perte de fonction) et peut conduire à la formation d’agrégats protéiques qui sont souvent toxiques pour les cellules. Pour pallier ces défauts de repliement, les bactéries possèdent des protéines chaperons dont une grande partie est conservée des bactéries à l’homme. Dans le groupe, nous nous intéressons au fonctionnement au niveau moléculaire des chaperons généraux Hsp90, Hsp33, et du système DnaK avec ses co-chaperons à domaine J (JDP). Nos recherches sont menées sur plusieurs modèles bactériens dont Escherichia coli et la bactérie environnementale Shewanella oneidensis qui s’est révélée être un modèle de choix pour l’étude des chaperons.


Nous cherchons à mieux comprendre la fonction physiologique et le mécanisme d’action de ces chaperons par des approches intégrées de microbiologie moléculaire en utilisant des techniques de génétique (cribles, sélections, mutagenèses dirigées et aléatoires), de biochimie (purifications de protéines, interactions protéines-protéines, systèmes de réactivation de protéine in vitro, systèmes de prévention d’agrégation des protéines) et de biophysique (fluorescence, dichroïsme circulaire, spectroscopie UV-Visible, ICP-OES).

En fonction des ressources présentes dans l’environnement et pour moduler leur métabolisme énergétique, les bactéries utilisent diverses enzymes dont certaines sont de larges complexes protéiques enchâssés dans les membranes.
Notre groupe étudie notamment des enzymes respiratoires impliquées dans l’oxydation ou la réduction énergétique de composés inorganiques du soufre (Sulfite déshydrogénase SoeABC ou complexe hétérodisulfure réductase Hdr par exemple), de composés organiques comme le TMAO (système Tor) ou encore l’utilisation de l’hydrogène (hydrogénases associées à la membrane). Au cours de nos études sur les complexes enzymatiques membranaires, nous décryptons également le rôle de protéines intervenant dans la stabilisation de certains de ces complexes, ou utilisées comme substrats de ces enzymes (comme des soufre transférases solubles). La caractérisation fine de ces protéines, complexes et supercomplexes par diverses approches biochimiques ou biophysiques (purification de protéines solubles ou membranaires, activités enzymatiques, gels bleu natifs, spectroscopies, dichroïsme circulaire, …) affinant la connaissance des propriétés de chacun des constituants ainsi que celle de l’ensemble de l’édifice architectural permet ensuite de mieux appréhender leur fonction à l’échelle de la cellule. La compréhension de ces mécanismes moléculaires nous permet ensuite de reconstituer les voies métaboliques énergétiques que nous étudions.
Ces études sont menées sur les bactéries environnementales Aquifex aeolicus et Shewanella oneidensis.
Références :
- N. Maillot, F. Honoré, D. Byrne, V. Méjean, O. Genest. Cold adaptation in the environmental bacterium Shewanella oneidensis is controlled by a J-domain co-chaperone protein network. Commun Biol, 2019, 2 (1). DOI: 10.1038/s42003-019-0567-3 HAL: hal-02371718v1
- F. Honoré, V. Méjean, O. Genest. Hsp90 Is Essential under Heat Stress in the Bacterium Shewanella oneidensis. Cell Reports, 2017, 19 (4), 680 – 687. DOI: 10.1016/j.celrep.2017.03.082 HAL: hal-01525196v1
- S. Boughanemi, J. Lyonnet, P. Infossi, M. Bauzan, A. Kosta, S. Lignon, M.-T. Giudici-Orticoni, M. Guiral. Microbial oxidative sulfur metabolism: biochemical evidence of the membrane-bound heterodisulfide reductase-like complex of the bacterium Aquifex aeolicus. FEMS Microbiol Lett., 2016, 363 (15). pii: fnw156. DOI: 10.1093/femsle/fnw156
- S. Boughanemi, P. Infossi, M.-T. Giudici-Orticoni, B. Schoepp-Cothenet, M. Guiral. Sulfite oxidation by the molybdenum sulfite-oxidizing, quinone-reducing SoeABC enzyme from the bacterium Aquifex aeolicus. Submitted to BBA Bioenergetics, 2020
- N. Lemaire, P. Infossi, A. Ali Chaouche , L. Espinosa , S. Leimkühler , M.-T. Giudici-Orticoni , V. Mejean, C. Iobbi-Nivol 2018. Small membranous proteins of the TorE/NapE family, crutches for cognate respiratory systems in Proteobacteria Sci Rep. 8(1):13576. doi: 10.1038/s41598-018-31851-2.
The fascinating ability of bacteria to thrive in changing environments lies in complex adaptation systems. In our group, we aim at understanding the mechanisms by which bacteria (i) modify their metabolism to use available resources, (ii) reorganize their genetic expression using alternative transcription factors, (iii) ensure the proper folding and protection of proteins in function of stress, (iv) move towards nutrients or flee toxic compounds, and at last (v) adapt at the population level by forming biofilms or by using resources produced by other species within bacterial consortia. These studies are conducted at different scales, from the molecular to the cellular scale, and even to the multi-cellular scale.
At the molecular scale, we focus on chaperone proteins and on membrane protein complexes.

Stresses (heat shock, oxidative stress, metals, …) faced by bacteria perturb protein integrity. This may affect their native fold (leading to the loss of protein activity) and induce protein aggregation which is often toxic for the cell. To prevent protein misfolding, bacteria use chaperones, most of them are conserved from bacteria to human. In the group, we study at the molecular level the general molecular chaperones Hsp90, Hsp33, and the DnaK system with its J-domain proteins co-chaperones (JDP).
We use different bacterial models such as Escherichia coli, or the environmental bacterium Shewanella oneidensis which appears like a perfect bacteria model for chaperones studies. Our goal is to determine the physiological function and molecular mechanism of these

chaperones by using integrated molecular microbiology approaches combining genetic techniques (screening, selection, directed- or random-mutagenesis), biochemistry (protein purification, protein-protein interactions, in vitro protein activation, protein aggregation systems) and biophysics (fluorescence and UV-visible spectroscopies, circular dichroism, ICP-OES).

Depending on the resources available in their environment, and to modulate their energy metabolism, bacteria use large protein complexes anchored in the bacterial envelope

In particular, our group studies respiratory enzymes involved in the oxidation or reduction of inorganic sulfur compounds (Sulfite dehydrogenase SoeABC, the complex heterodisulfide reductase Hdr, …), the reduction of inorganic compounds such as TMAO (Tor system) or the oxidation of H2 (membrane-bound hydrogenases). We also study the role of proteins either involved in the stabilization of these large complexes or used as substrate of these complexes (eg. sulfur transferases). By using biochemical and biophysical approaches (purification of soluble or membrane proteins, enzymatic assays, blue native gels, spectroscopies, circular dichroism, …), we characterize these proteins, either individually or in complexes or supercomplexes to better learn about their function at the cellular scale. Understanding these molecular mechanisms is crucial to reconstitute the energy pathways in which these complexes are involved. These studies are conducted using the environmental bacteria Aquifex aeolicus and Shewanella oneidensis.
References :
- Nathanael Jean Maillot, Flora Ambre Honoré, Deborah Byrne, Vincent Méjean, Olivier Genest. Cold adaptation in the environmental bacterium Shewanella oneidensis is controlled by a J-domain co-chaperone protein network. Commun Biol, 2019, 2 (1). DOI: 10.1038/s42003-019-0567-3 HAL: hal-02371718v1
- Flora Ambre Honoré, Vincent Méjean, Olivier Genest. Hsp90 Is Essential under Heat Stress in the Bacterium Shewanella oneidensis. Cell Reports, 2017, 19 (4), 680 – 687. DOI: 10.1016/j.celrep.2017.03.082 HAL: hal-01525196v1
- Souhéla Boughanemi, Jordan Lyonnet, Pascale Infossi, Marielle Bauzan, Artemis Kosta, Sabrina Lignon, Marie-Thérèse Giudici-Orticoni, Marianne Guiral. Microbial oxidative sulfur metabolism: biochemical evidence of the membrane-bound heterodisulfide reductase-like complex of the bacterium Aquifex aeolicus. FEMS Microbiol Lett., 2016, 363 (15). pii: fnw156. DOI: 10.1093/femsle/fnw156.
- Souhéla Boughanemi, Pascale Infossi, Marie-Thérèse Giudici-Orticoni, Barbara Schoepp-Cothenet, Marianne Guiral. Sulfite oxidation by the molybdenum sulfite-oxidizing, quinone-reducing SoeABC enzyme from the bacterium Aquifex aeolicus. Submitted to BBA Bioenergetics, 2020.
- N. Lemaire, P. Infossi, A. Ali Chaouche , L. Espinosa , S. Leimkühler , M.-T. Giudici-Orticoni , V. Mejean, C. Iobbi-Nivol Small membranous proteins of the TorE/NapE family, crutches for cognate respiratory systems in Proteobacteria Sci Rep. 8(1):13576. doi: 10.1038/s41598-018-31851-2.




- Baaziz H, Gambari C, Boyeldieu A, Ali Chaouche A, Alatou R, Méjean V, Jourlin-Castelli C, Fons M. 2017, ChrASO, the chromate efflux pump of Shewanella oneidensis, improves chromate survival and reduction. PLoS One. 12(11):e0188516. doi: 10.1371/journal.pone.0188516.
- Lemaire O N, Honoré F, Tempel S, Fortier E M, Leimkühler S, Méjean V, Iobbi-Nivol C 2019 Insights into chromate resistance of Shewanella decolorationis LDS1. AEM septembre 2019 AEM.00777-19. doi: 10.1128/AEM.00777-19.
- Guiral M, Neitzel C, Salvador Castell M, Martinez N, Giudici-Orticoni MT, Peters J. The effect of pH on the dynamics of natural membranes. Eur Phys J E Soft Matter. 2018 41(2):22. doi: 10.1140/epje/i2018-11630-y. PMID: 29464436.
- Honoré FA, Maillot NJ, Méjean V, Genest O.Interplay between the Hsp90 Chaperone and the HslVU Protease To Regulate the Level of an Essential Protein in Shewanella oneidensis. mBio. 2019 10(3):e00269-19. doi: 10.1128/mBio.00269-19.
- Bouillet S., Genest O., Jourlin-Castelli C., Fons M., Méjean V., Iobbi-Nivol C. 2016 The general stress response σS is regulated by a partner-switch in the gram-negative bacterium Shewanella oneidensis. J Biol Chem. 291:26151-63.




- Baaziz H, Gambari C, Boyeldieu A, Ali Chaouche A, Alatou R, Méjean V, Jourlin-Castelli C, Fons M. 2017, ChrASO, the chromate efflux pump of Shewanella oneidensis, improves chromate survival and reduction. PLoS One. 12(11):e0188516. doi: 10.1371/journal.pone.0188516.
- Lemaire O N, Honoré F, Tempel S, Fortier E M, Leimkühler S, Méjean V, Iobbi-Nivol C 2019 Insights into chromate resistance of Shewanella decolorationis LDS1. AEM septembre 2019 AEM.00777-19. doi: 10.1128/AEM.00777-19.
- Guiral M, Neitzel C, Salvador Castell M, Martinez N, Giudici-Orticoni MT, Peters J. The effect of pH on the dynamics of natural membranes. Eur Phys J E Soft Matter. 2018 41(2):22. doi: 10.1140/epje/i2018-11630-y. PMID: 29464436.
- Honoré FA, Maillot NJ, Méjean V, Genest O.Interplay between the Hsp90 Chaperone and the HslVU Protease To Regulate the Level of an Essential Protein in Shewanella oneidensis. mBio. 2019 10(3):e00269-19. doi: 10.1128/mBio.00269-19.
- Bouillet S., Genest O., Jourlin-Castelli C., Fons M., Méjean V., Iobbi-Nivol C. 2016 The general stress response σS is regulated by a partner-switch in the gram-negative bacterium Shewanella oneidensis. J Biol Chem. 291:26151-63.



- Bouillet S, Ba M, Houot L, Iobbi-Nivol C and Bordi C 2019, Connected partner-switches control the life style of Pseudomonas aeruginosa through RpoS regulation. Scientific Reports 9:6496 | https://doi.org/10.1038/s41598-019-42653-5
- Benomar S, Ranava D, Cárdenas ML, Trably E, Rafrafi Y, Ducret A, Hamelin J, Lojou E, Steyer JP, Giudici-Orticoni MT. 2015, Nutritional stress induces exchange of cell material and energetic coupling between bacterial species. Nat Commun. 6:6283. doi: 10.1038/ncomms7283.
- Gambari C, Boyeldieu A, Armitano J, Méjean V, Jourlin-Castelli C. 2019, Control of pellicle biogenesis involves the diguanylate cyclases PdgA and PdgB, the c-di-GMP binding protein MxdA and the chemotaxis response regulator CheY3 in Shewanella oneidensis. Environ Microbiol. 21(1):81-97. doi: 10.1111/1462-2920.14424.



- Bouillet S, Ba M, Houot L, Iobbi-Nivol C and Bordi C 2019, Connected partner-switches control the life style of Pseudomonas aeruginosa through RpoS regulation. Scientific Reports 9:6496 | https://doi.org/10.1038/s41598-019-42653-5
- Benomar S, Ranava D, Cárdenas ML, Trably E, Rafrafi Y, Ducret A, Hamelin J, Lojou E, Steyer JP, Giudici-Orticoni MT. 2015, Nutritional stress induces exchange of cell material and energetic coupling between bacterial species. Nat Commun. 6:6283. doi: 10.1038/ncomms7283.
- Gambari C, Boyeldieu A, Armitano J, Méjean V, Jourlin-Castelli C. 2019, Control of pellicle biogenesis involves the diguanylate cyclases PdgA and PdgB, the c-di-GMP binding protein MxdA and the chemotaxis response regulator CheY3 in Shewanella oneidensis. Environ Microbiol. 21(1):81-97. doi: 10.1111/1462-2920.14424.